Generalized spectral resolution. Let $\left.\left\{\mid a_{i}\right)\right\}$ refer to an arbitrary basis in the real inner-product space \mathcal{V}_{n}. Since neither orthogonality nor normality are assumed, we have

$$
\left(a_{i} \mid a_{j}\right)=g_{i j}
$$

where $\left\|g_{i j}\right\|$ is real, symmetric and (by linear independence) non-singular. The generic element $\mid x) \in \mathcal{V}_{n}$ can be developed

$$
\left.|x|=\mid a_{k}\right) x^{k}
$$

which gives

$$
\left(a_{j} \mid x\right)=g_{j k} x^{k}
$$

Writing $\left\|g_{i j}\right\|^{-1}=\left\|g^{i j}\right\|$ we have

$$
g^{i j}\left(a_{j} \mid x\right)=g^{i j} g_{j k} x^{k}=\delta_{k}^{i} x^{k}=x^{i}
$$

giving

$$
\left.\left.|x|=\mid a_{i}\right) g^{i j}\left(a_{j} \mid x\right) \quad: \quad \text { all } \mid x\right)
$$

from which we conclude that

$$
\left.\mid a_{i}\right) g^{i j}\left(a_{j} \mid=\mathbb{I}\right.
$$

Introduce now into \mathcal{V}_{n} a second non-orthogonal basis with elements

$$
\left.\left.\mid A^{j}\right)=\mid a_{i}\right) g^{i j} \quad \text { similarly } \quad\left(A^{i} \mid=g^{i j}\left(a_{j} \mid\right.\right.
$$

which supply these alternative constructions of the unit matrix:

$$
\left.\mid A^{i}\right)\left(a_{i}|=| A^{i}\right) g_{i j}\left(A^{j}|=| a_{j}\right)\left(A^{j} \mid=\mathbb{I}\right.
$$

Moreover

$$
\left(A^{i} \mid a_{j}\right)=g^{i k}\left(a_{k} \mid a_{j}\right)=g^{i k} g_{k j}=\delta_{j}^{i}
$$

which is to say:

$$
\left.\mid A^{i}\right) \perp \text { all }\left|a_{j}\right|: j \neq i
$$

The non-orthonormal bases $\left.\left\{\mid a_{i}\right)\right\}$ and $\left.\left\{\mid A^{j}\right)\right\}$ are said to be "biorthogonal" (or "reciprocal"). ${ }^{1}$

Look now to the matrices

$$
\left.\mathbb{P}_{i}=\mid a_{i}\right)\left(A^{i} \mid \quad \text { and } \quad \mathbb{Q}_{i}=\mid A^{i}\right)\left(a_{i} \mid \quad \text { no summation on } i\right.
$$

where the index placement on \mathbb{P}_{i} and \mathbb{Q}_{i} is merely conventional (intended to convey no mathematical meaning). Those (I look only to \mathbb{P}_{i}; similar remarks pertain to \mathbb{Q}_{i}) seen to be orthogonal projection matrices

$$
\left.\mathbb{P}_{i} \mathbb{P}_{j}=\mid a_{i}\right)\left(A^{i} \mid a_{j}\right)\left(A^{j}|=| a_{i}\right) \delta^{i}{ }_{j}\left(A^{j} \left\lvert\,=\left\{\begin{array}{lll}
\mathbb{P}_{i} & : & i=j \\
\mathbb{O} & : & i \neq j
\end{array}\right.\right.\right.
$$

and have already been seen to be complete: $\sum_{i} \mathbb{P}_{i}=\mathcal{J}$. They project onto

[^0]2

1-spaces (rays); specifically

$$
\left.\begin{array}{rl}
\text { right action: } & \left.\left.\mathbb{P}_{i} \mid x\right)=\mid a_{i}\right) x^{i} \\
\text { left action: } & \left(x \mid \mathbb{P}_{i}=x_{i}\left(A^{i} \mid\right.\right.
\end{array}\right\} \quad: \quad \text { no summation on } i
$$

Given an arbitrary square matrix \mathbb{M} we have

$$
\begin{align*}
\mathbb{M} & =\mathbb{I} \mathbb{M} \mathbb{I} \\
& =\sum_{i j} \mathbb{P}_{i} \mathbb{M} \mathbb{P}_{j} \\
& \left.=\sum_{i j} \mid a_{i}\right)\left(A^{i}|\mathbb{M}| a_{j}\right)\left(A^{j} \mid\right. \tag{1}\\
& \left.=\sum_{i j} m^{i}{ }_{j} \mid a_{i}\right)\left(A^{j} \mid \quad \text { where } \quad m^{i}{ }_{j}=\left(A^{i}|\mathbb{M}| a_{j}\right)\right.
\end{align*}
$$

Here \mathbb{M} is displayed as a weighted linear combination of the n^{2}-population of matrices ${ }^{2}$

$$
\left.\mathbb{F}_{i j}=\mid a_{i}\right)\left(A^{j} \mid \quad: \quad \mathbb{F}_{i i}=\mathbb{P}_{i}\right.
$$

and $\left\|m^{i}{ }_{j}\right\|$ provides the matrix representation with respect to the non-orthogonal $\left.\left\{\mid a_{i}\right)\right\}$-basis of \mathbb{M}; it permits $\left.\left.|x| \rightarrow \mid \tilde{x}\right)=\mathbb{M} \mid x\right)$ to be represented

$$
x^{i} \rightarrow \tilde{x}^{i}=m_{j}^{i} x^{j}
$$

So much by way of preparation.
Let us assume - simply to keep simple things simple; both assumptions could easily be relaxed - that the eigenvalues (whence also the eigenvectors) of the otherwise arbitrary real square matrix \mathbb{M} are real and distinct:

$$
\left.\left.\mathbb{M} \mid e_{i}\right)=\lambda_{i} \mid e_{i}\right)
$$

The eigenvectors $\left\{\left|e_{i}\right|\right\}$ then provide a generally non-orthogonal eigenbasis in ν_{n}. Proceeding as before, we construct $\left(e_{i} \mid e_{j}\right)=g_{i j},\left(E^{i}\left|=g^{i j}\right| e_{j}\right)$ and the complete set of orthogonal projectors $\left.\mathbb{P}=\mid e_{i}\right)\left(E^{i} \mid\right.$. We then have, as an instance of (1),

$$
\begin{align*}
\mathbb{M} & \left.=\sum_{i j} \mid e_{i}\right)\left(E^{i}|\mathbb{M}| e_{j}\right)\left(E^{j} \mid\right. \\
& \left.=\sum_{i j} \mid e_{i}\right) \lambda_{j} \delta^{i}{ }_{j}\left(E^{j} \mid\right. \\
& =\sum_{i} \lambda_{i} \mathbb{P}_{i} \tag{2}
\end{align*}
$$

When \mathbb{M} is symmetric the eigenbasis is orthogonal and (2) reduces to the familiar spectral decomposition, but as it stands it appears to provide an unrestricted generalization of that familiar result.

Nicholas Wheeler
29 May 2016

[^1]
[^0]: ${ }^{1}$ When $\left.\left\{\mid a_{i}\right)\right\}$ is in fact orthonormal $\left(g^{i j}=\delta^{i j}\right)$ the distinction between $\left.\left\{\mid a_{i}\right)\right\}$ and $\left.\left\{\mid A^{i}\right)\right\}$-as also between $\left\{\left(a_{i} \mid\right\}\right.$ and $\left\{\left(A^{i} \mid\right\}\right.$ - evaporates.

[^1]: ${ }^{2}$ I have in the case $n=2$ established the trace-wise orthogonality of the \mathbb{F}-matrices. I am confident that trace-wise orthogonality holds generally (proof would at the moment take me too far afield), which if so can be expected to support a rich "Fourier analytic" theory with diverse applications. It is my sense (see the Wikipedia article "Reciprocal Lattice") that Pontryagin and othersphysicists as well as mathematicians-have already explored this ground, and pursued it to esoterically abstract heights.

